Abstract

The dinuclear bis(N-heterocyclic carbene) borane adduct 2 rapidly reacts with tritylium salts at room temperature but the outcome is strongly impacted by the respective counter-ion. Using tritylium tetrakis(perfluoro-tert-butoxy)aluminate affords - depending on the solvent - either the bis(boronium) ion 4 or the hydride-bridged dication 5. In case of tritylium hexafluorophosphate, however, H/F exchange occurs between boron and phosphorus yielding the dinuclear BF3 adduct 3 along with phosphorus dihydride trifluoride. H/F exchange also takes place when using the mononuclear N-heterocyclic carbene BH3 adduct 6 and hence provides a facile route to PH2 F3 , which is usually synthesized in more complex reaction sequences regularly involving toxic hydrogen fluoride. DFT calculations shed light on the H/F exchange between the borenium ion and the [PF6 ]- counter-ion and the computed mechanism features only small barriers in line with the experimental observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call