Abstract

Anion transmembrane transport mediated by novel noncovalent interactions is of central interest in supramolecular chemistry. In this work, a series of oxacalix[2]arene[2]triazine-derived transporters 1 and 2 bearing anion-π-, hydrogen-, and halogen-bonding sites in rational proximity were designed and synthesized by a one-pot strategy starting from gallic acid ester derivatives and mono- or di-halogen-substituted triazines. 1H NMR titrations demonstrated efficient binding of 1 and 2 toward Cl- and Br- in solution, giving association constants in the range of 102-104 M-1. Cooperation of anion-π, hydrogen, and halogen bonding was revealed as a driving force for anion binding by single-crystal structures of two complexes and density functional theory calculations. Fluorescence assays indicated that compounds 1 are efficient chloride transporters with effective concentrations (EC50) falling in the range of 3.1-7.4 μM and following an order of 1a > 1b > 1c > 1d. The contribution of halogen bonding and cooperative noncovalent bonds to ion transport was then discussed. Significantly, transporters 1 exhibit high anticancer activity. In the presence of 1 and KCl (60 mM), the cell survival of HCT116 reduces to 11.9-24.9% with IC50 values in the range of 52.3-66.4 μM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.