Abstract

In the case of the red blood cell, anion transport is a highly specific one-for-one exchange catalyzed by a major membrane protein known as band 3 or as capnophorin. This red cell anion-exchange system mediates the Cl-(-)HCO3- exchange responsible for most of the bicarbonate transport capacity of the blood. The rapidly expanding knowledge of the molecular biology and the transport kinetics of this specialized transport system is very briefly reviewed in Section III. Exchange diffusion mechanisms for anions are found in many cells other than erythrocytes. The exchange diffusion system in Ehrlich cells has several similarities to that in red cells. In several cell types (subsection IV-B), there is evidence that intracellular pH regulation depends on Cl-(-)HCO3- exchange processes. Anion exchange in other single cells is described in Section IV, and its role in pH regulation is described in Section VII. Anion exchange mechanism operating in parallel with, and only functionally linked to Na+-H+ or K+-H+ exchange mechanisms can also play a role in cell volume regulation as described in Section VII. In the Ehrlich ascites cell and other vertebrate cells, electroneutral anion transfer has been found to occur also by a cotransport system for cations and chloride operating in parallel with the exchange diffusion system. The cotransport system is capable of mediating secondary active chloride influx. In avian red cells, the cotransport system has been shown to be activated by adrenergic agonists and by cyclic AMP, suggesting that the cotransport is involved in regulatory processes (see subsection V-A.). In several cell types, cotransport systems are activated and play a role during volume regulation, as described in Section V and in Section VII. It is also likely that this secondary active cotransport of chloride plays a significant role for the apparently active extrusion of acid equivalents from certain cells. If a continuous influx of chloride against an electrochemical gradient is maintained by a cotransport system, the chloride disequilibrium can drive an influx of bicarbonate through the anion exchange mechanism, as described in Section VII. Finally, even the electrodiffusion of anions is shown to be regulated, and in Ehrlich cells and human lymphocytes an activation of the anion diffusion pathway plays a major role in cell volume regulation as described in Section VI and subsection VII-B.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call