Abstract

Sulfate efflux was measured in inside-out vesicles obtained from human red cells. Inhibition was observed in vesicles derived from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate) or after addition of dipyridamole to the vesicles, both agents being specific and potent inhibitors of anion transport in cells. Trypsinization of the cytoplasmic side of the membrane in order to release a 40 000 dalton fragment from band 3 (the purported anion transport protein) had no effect on sulfate efflux. Further degradation of band 3 to a 17 000 dalton segment, by trypsinization of inside-out vesicles derived from cells that had been pretreated with chymotrypsin, also showed little reduction in transport activity. Furthermore, such vesicles derived from DIDS pretreated cells were inhibited by over 90%. In DIDS-treated cells, the agent is highly localized in band 3. In trypsinized inside-out vesicles, it is largely found in a 55 000 fragment and in trypsinized vesicles derived from cells pretreated with chymotrypsin it is largely located in the 17 000 fragment. The data suggest that both the anion transport and inhibitor binding sites are located in a 17 000 transmembrane segment of band 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call