Abstract

Anion transmembrane nanochannels constructed from dynamic covalent helices (DCHs) are reported. The dynamic covalent structures can be synthesized by one-pot dynamic covalent reactions and helically self-fold into nanotubes through intramolecular hydrogen bonding and π-π interactions. Such helical structures can vertically self-assemble into long nanofibers under π-π stacking and their hollow nanocavities finally form ion permeation pathways across the lipid membranes. Single-channel electrophysiology signals provide solid evidence of DCHs following the channel rather than the carrier mechanism. Owing to the pore-forming capacity of DCHs, nanochannels are able to accelerate the movement of anions across lipid membranes with high transport activity (EC50 =0.08 mol %). Moreover, DCH channels show dehydration energy dependent anion selectivity. This report highlights the importance of such DCHs as general channel scaffolds with economical synthesis and special nanocavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call