Abstract
AbstractElectrolytes with anion‐dominated solvation are promising candidates to achieve dendrite‐free and high‐voltage potassium metal batteries. However, it's challenging to form anion‐reinforced solvates at low salt concentrations. Herein, we construct an anion‐reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic‐rich and stable electrode‐electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut‐off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether‐based high‐voltage electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.