Abstract

Metallic Na is a promising anode for rechargeable batteries, however, it is plagued by an unstable solid electrolyte interphase (SEI) and Na dendrites. Herein, a robust anion-derived SEI is constructed on Na anode in a high-concentration 1,2-dimethoxyethane (DME) based electrolyte with a cosolvent hydrofluoroether, which effectively restrains Na dendrite growth. The hydrofluoroether can tune the solvation configuration of the electrolyte from three-dimensional network aggregates to solvent-cation-anion clusters, enabling more anions to enter and reinforce the inner solvation sheath and their stepwise decomposition. The gradient inorganic-rich SEI leads to a reduced energy barrier of Na+ migration and enhanced interfacial kinetics. These render the Na||Na3 V2 (PO4 )3 battery with an excellent rate capability of 79.9 mAh g-1 at 24 C and a high capacity retention of 94.2 % after 6000 cycles at 2 C. This highlights the modulation of the electrode-electrolyte interphase chemistry for advanced batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call