Abstract

AbstractThe precise control over hierarchical self‐assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine‐based metallo‐cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self‐assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo‐cage T adopted a hexagonal close‐packed structure. By adding Cl−/Br− or I−, drastically different hierarchical superstructures with highly‐tight hexagonal packing or graphite‐like packing arrangements, respectively, have been achieved. These unusual halide‐ion‐triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three‐dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo‐cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP‐ or MMMM‐type enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call