Abstract

AbstractSodium‐ion batteries (SIBs) with wide operating temperature are regarded as promising candidates for large‐scale energy storage systems. However, SIBs operating under elevated temperature aggravate the electrolyte decomposition with unstable cathode‐electrolyte interphase (CEI), causing a rapid capacity degradation. Herein, anion receptor tris(pentafluorophenyl)borane (TPFPB) is selected as electrolyte additive to construct robust NaF‐rich CEI. The strong interactions between anion and TPFPB via the electron‐deficient boron atoms weaken ClO4− solvation and promote the coordination capability between solvents and Na+ cations, demonstrating greatly improved oxidative stability. Na3V2(PO4)3 cathode in TPFPB‐containing electrolyte delivers long‐term stability with a capacity retention of 86.9% after 100 cycles at a high cut‐off voltage of 4.2 V (vs. Na+/Na) and a high temperature of 60 °C. Besides, TPFPB also works well with enhanced performance over a temperature range from −30 to 60 °C. This study proposes a prospective method by manipulating the solvation chemistry for constructing high‐temperature rechargeable SIBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call