Abstract

The adsorption-catalysis synergy for accelerated conversion of polysulfides is critical toward the electrochemical stability of lithium-sulfur battery (LSB). Herein, a non-metallic polymer network with anion receptor units, trifluoromethanesulfonyl (CF3SO2-) substituted aza-ether, was in-situ integrated on PE separator, working as an efficient host for anchoring lithium thiophosphates (LPS) as redox mediators and polysulfides through Lewis acid-base interaction. The anchored LPS on the modified PE separator displayed a robust chemical adsorption ability towards polysulfides through the formation of SS bond. Meanwhile, LPS decreased the energy barrier of Li2S nucleation and promoted redox reaction kinetics. The battery with LPS decorated separator revealed a long cycling lifespan with a per cycle decay of 0.056 % after 600 cycles, and a competitive initial capacity of 889.1 mAh/g when the of sulfur cathode increased to 3 mg cm−2. This work developed a new design strategy to promote the utilization of lithium phosphorus sulfide compounds in LSB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call