Abstract

The perovskite oxynitride LaTiO_{2}N is a promising material for photocatalytic water splitting under visible light. One of the obstacles towards higher efficiencies of this and similar materials stems from charge-carrier recombination, which could be suppressed by the surface charges resulting from the dipolar field in polar materials. In this study, we investigate the spontaneous polarization in epitaxially strained LaTiO_{2}N thin films via density functional theory calculations. The effect of epitaxial strain on the anion order, resulting out-of-plane polarization, energy barriers for polarization reversal, and corresponding coercive fields are studied. We find that for compressive strains larger than 4% the thermodynamically stable anion order is polar along the out-of-plane direction and has a coercive field comparable to other switchable ferroelectrics. Our results show that strained LaTiO_{2}N could indeed suppress carrier recombination and lead to enhanced photocatalytic activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.