Abstract

A β-class carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Francisella tularensis (FtuβCA) was cloned and purified, and the anion inhibition profile was investigated. Based on the measured kinetic parameters for the enzyme catalyzed CO2 hydration reaction (kcat of 9.8×105s−1 and a kcat/KM of 8.9×107M−1s−1), FtuβCA is a highly effective enzyme. The activity of FtuβCA was not inhibited by a range of anions that do not typically coordinate Zn(II) effectively, including perchlorate, tetrafluoroborate, and hexafluorophosphate. Surprisingly, some anions which generally complex well with many cations, including Zn(II), also did not effectively inhibit FtuβCA, e.g., fluoride, cyanide, azide, nitrite, bisulphite, sulfate, tellurate, perrhenate, perrhuthenate, and peroxydisulfate. However, the most effective inhibitors were in the range of 90–94µM (sulfamide, sulfamic acid, phenylarsonic and phenylboronic acid). N,N-Diethyldithiocarbamate (KI of 0.31mM) was a moderately potent inhibitor. As Francisella tularensis is the causative agent of tularemia, the discovery of compounds that can interfere with the life cycle of this pathogen may result in novel opportunities to fight antibiotic drug resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.