Abstract
Diffusion of 36Cl − in compacted bentonite was studied using through-diffusion, out-diffusion and profile analysis techniques. Both the bulk dry density of the bentonite and the composition of the external solution were varied. Increasing the bulk dry density of the bentonite resulted in a decrease of both the effective diffusion coefficient and the Cl-accessible porosity. Increasing the ionic strength of the external solutions resulted in an increase of both the effective diffusion coefficient and the Cl-accessible porosity. This can be explained by anion exclusion effects (Donnan exclusion). At high ionic strength values (I ⩾ 1 M NaCl) the Cl-accessible porosity approaches the interparticle porosity. This interparticle porosity is the difference between the total and interlayer porosity of the bentonite. The interlayer porosity was found to depend on the degree of compaction. Up to a bulk dry density of 1300 kg m −3 the interlayer is built up of 3 water layers. Between 1300 and 1800 kg m −3 the interlayer water is reduced from 3 to 2 layers of water. Above 1800 kg m −3 evidence for a further decrease to 1 layer of water was found. These findings are in agreement with X-ray data found in the literature showing a decrease of the basal spacing of montmorillonite (the main clay mineral in bentonite) with increasing degree of compaction. The relationship between the effective diffusion coefficient of Cl − and the diffusion-accessible porosity can be described by an empirical relationship analogous to Archie’s law. To predict the effective diffusion coefficient of Cl − in compacted bentonite, the diffusion coefficient of Cl − in water, the bulk dry density and the ionic strength of the pore water have to be known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.