Abstract

Alkaline-based electrochemical devices, such as anion exchange membrane (AEM)fuel cells and electrolyzers, are receiving increasing attention. However, while the catalysts and membrane are methodically studied, the ionomer is largely overlooked. In fact, most of the studies in alkaline electrolytes are conducted using the commercial proton exchange ionomer Nafion. The ionomer provides ionic conductivity; it is also essential for gas transport and water management, as well as for controlling the mechanical stability and the morphology of the catalyst layer. Moreover, the ionomer has distinct requirements that differ from those of anion-exchange membranes, such as a high gas permeability, and that depend on the specific electrode, such as water management. As a result, it is necessary to tailor the ionomer structure to the specific application in isolation and as part of the catalyst layer. In this review, an overview of the current state of the art for anion exchange ionomers is provided, summarizing their specific requirements and limitations in the context of AEM electrolyzers and fuel cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call