Abstract
The unique tetrapyridyl ligand 1,2,4,5-tetra(4-pyridyl)benzene (bztpy) isolated from previous hydrothermal in situ metal ligand reaction is found to exhibit remarkable anion-dependent assembly of a series of novel metal–organic frameworks (MOFs), [Cu2(CN)2(bztpy)] (1), [Cu(SO4)(bztpy)]·1.5H2O (2), [Cu2Br2(bztpy)]·MeCN (3) and [Cu10I10(bztpy)2]·2H2O (4), which were synthesized under hydro/solvothermal conditions. These MOFs were characterized by elemental analysis, IR and single-crystal X-ray diffraction. Compound 1 consists of [Cu(CN)]n chains that link the neighbouring ones via tetradentate bztpy bridges to form a corrugated 2D layer. When bztpy is treated with CuSO4, a 3D (3,5)-connected network 2 is obtained, in which novel [Cu(bztpy)]n ladders are interconnected by sulfate anions μ-bridges. However, Br− and I− anions assist the formation of {Cu2Br2} and {Cu10I10} SBU in the cluster-based metal–organic frameworks 3 and 4, respectively, and result in a completely different topology. Compound 3 shows a 3D PtS net, while compound 4 has a new 3D (4,8)-connected topology. A discussion of the crystal structures, as well as the coordination behaviour of the special tetrapyridyl ligand upon different geometries of the central connecter is provided. In addition, the photoluminescent properties of 1, 3 and 4 in the solid state at ambient temperature are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.