Abstract
The anionic requirements and the stoichiometric relationships of Na+-taurine cotransport into rat renal brush-border membrane vesicles (BBMV) were evaluated. External Cl- (100 mM) or Br- (100 mM) gradients supported the full overshoot of Na+-taurine symport and yielded similar high-affinity transport systems for taurine uptake. No active uptake of taurine was evident in the presence of external (100 mM) NaF, NaI, Na gluconate, or Na p-aminohippurate (PAH). Na+:taurine stoichiometry was 2.18:1 in the presence of Cl- and 1.60:1 in the presence of Br-. When the external anion gluconate was employed, Na+-dependent taurine uptake was negligible over the whole range of Na+ concentrations examined. Cl-:taurine and Br-:taurine stoichiometries in the presence of external Na+ were 0.97:1 and 0.81:1, respectively. External furosemide (1 mM) or bumetanide (1 mM) did not change taurine accumulation and kinetic parameters. The anionic transport inhibitors 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (5 x 10(-4) M), N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (10(-3) M) and p-chloromercuribenzoate (5 x 10(-4) M) significantly decreased initial rate of taurine uptake by 48, 31, and 31%, respectively. These data suggest that Na+-taurine cotransport into rat renal BBMV is Cl- or Br- dependent and probably operates by means of 2 Na+:1 Cl- or Br-:1 taurine carrier complex. Na+-taurine symport across the rat renal brush-border membrane surface is not affected by diuretics that influence NaCl cotransport but is affected by selected anionic transport inhibitors. An intact anionic binding site may be needed for this translocation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.