Abstract

The demand for high-energy-density lithium batteries (LBs) that work under a wide temperature range (-40 to 60 °C) has been increasing recently. However, the conventional lithium hexafluorophosphate (LiPF6)-based ester electrolyte with a solvent-based solvation structure has limited the practical application of LBs under extreme temperature conditions. In this work, a novel localized high-concentration electrolyte (LHCE) system is designed to achieve the anion-containing solvation structure with less free solvent molecules using lithium difluorophosphate (LiPO2F2) as a lithium salt, which enables wide-temperature electrolyte for LBs. The optimized solvation structure contributes to the cathode-electrolyte interface (CEI) with abundant LiF and P-O components on the surface of the LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode, effectively inhibiting the decomposition of electrolyte and the dissolution of transition-metal ions (TMIs). Moreover, the weakened Li+-dipole interaction is also beneficial to the desolvation process. Therefore, the 4.3 V Li||NCM523 cell using the modified electrolyte maintains a high capacity retention of 81.0% after 200 cycles under 60 °C. Meanwhile, a considerable capacity of 70.9 mAh g-1 (42.0% of that at room temperature) can be released at an extremely low temperature of -60 °C. This modified electrolyte dramatically enhances the electrochemical stability of NCM523 cells by regulating the solvation structure, providing guidelines for designing a multifunctional electrolyte that works under a wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.