Abstract

A series of anion exchange membranes of poly (fluorenylene ether sulfone) containing tertiary sulfonium hydroxide-functionalized fluorenyl groups were synthesized by sequential polycondensation, chloromethylation, substitution with dimethyl sulfide and ion exchange. They showed excellent solubility in polar aprotic solvents. Consequently, flexible and tough alkaline membranes with varying ionic contents were obtained by an anion exchange of tertiary sulfonium chloride polymers with 1.0 M KOH at room temperature. Different levels of substitution were performed to achieve high ionic conductivity as well as upholding the membranes’ mechanical stability. The tertiary sulfonium membranes demonstrated lower water uptake compared to quaternary ammonium membrane. High hydroxide ion conductivity was achieved up to 18.3 mS cm−1 at 80 °C with the membrane of the highest ion exchange capacity (IEC, 1.51 mmol g−1). The resulting alkaline polymers were characterized by 1H NMR, FT-IR, thermogravimetric analysis (TGA), water uptake, IEC, atomic force microscopic (AFM) images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.