Abstract

Synthetic paths toward the two polymorphs of a monohydrate, one anhydrous polymorph of 1-carboxamidino-5-hydroxy-3-methylpyrazole (hcmp) and two polymorphs of zinc complexes containing hcmp ligand are presented. By choosing ions which are not part of the final product, it is possible to direct the synthesis toward the particular polymorph. In all three modifications of hcmp, the same hydrogen bonding motif appears, leading to formation of similar molecular chains. Differences arise due to different modes of chain aggregation and the presence of solvent water. Analysis of the crystal packing and the energetic features of hcmp polymorphs is made using the PIXEL model. The thermal decomposition processes are examined using differential scanning calorimetry and thermogravimetry. Analysis of crystal packing in the two polymorphs of zinc complex suggests the key role of the hydrogen bonding capacity of the aqua ligand for the appearance of the two polymorphic forms. In both polymorphs of zinc complex, stacking interactions have an important role. However, the enhanced hydrogen bonding capacity of the aqua ligand influences the formation of multistacking arrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.