Abstract

Understand the underlying mechanism governing the salt-induced precipitation of a basic (pI = 8.8) protein, Peptibody A (PbA), in acidic solutions. The rate, extent, and reversibility of PbA precipitation was monitored over 4-weeks as a function of pH (3.7-5.0), salt concentration (0-400 mM), and ion identity using a series of monovalent, Hofmeister anions (F(-), Cl(-), Br(-), I(-), ClO(4) (-), SCN(-)) and cations (Li+, Na+, K+, Rb+, Cs+). The effects of salt on conformational stability and reduced valence were determined using Fourier-transform infrared spectroscopy, circular dichroism, and capillary electrophoresis/analytical ultracentrifugation. PbA precipitation occurred upon salt addition and could be modulated with solution pH, salt identity & concentration. The precipitation was sensitive to anions, but not cations, and increased with anion size. A reverse Hofmeister effect (SCN(-) approximately ClO(4) (-)>I(-)>Cl(-)>Br(-)>F(-)) was observed with "salting-in" anions being the more effective precipitants. An increase in the precipitation rate below pH 4.3 indicated that protonation of aspartyl and glutamyl side-chains was also important for precipitation. The reversibility of precipitation was excellent (100%) at 4 degrees C but decreased upon storage at 25 degrees C and 37 degrees C; the loss in reversibility correlated with an increase in intermolecular beta-sheet content of the precipitate. Salts, employed as buffering, tonicifying, and viscosity modifying agents, may adversely affect the solubility of basic proteins formulated under acidic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.