Abstract

A novel kinetic approach was used to measure monovalent anion binding to better define the mechanistic basis for competition between stilbenedisulfonates and transportable anions on band 3. An anion-induced acceleration in the release of 4,4prime-dibenzamidostilbene-2,2prime-disulfonate (DBDS) from its complex with band 3 was measured using monovalent anions of various size and relative affinity for the transport site. The K1/2values for anion binding were determined and correlated with transport site affinity constants obtained from the literature and the dehydrated radius of each anion. The results show that anions with ionic radii of 120-200 pm fall on a well-defined correlation line where the ranking of the K1/2values matched the ranking of the transport site affinity constants (thiocyanate < nitrate equivalent to bromide < chloride < fluoride). The K1/2values for the anions on this line were about 4-fold larger than expected for anion binding to inhibitor-free band 3. Such a lowered affinity can be explained in terms of allosteric site-site interactions, since the K1/2values decreased with increasing anionic size. In contrast, iodide, with an ionic radius of about 212 pm, had a 10-fold lower affinity than predicted by the correlation line established by the smaller monovalent anions. These results indicate that smaller monovalent anions have unobstructed access to the transport site within the band 3 / DBDS binary complex, while iodide experiences significant steric hindrance when binding. The observation of steric hindrance in iodide binding to the band 3 / DBDS binary complex, but not in the binding of smaller monovalent anions, suggests that the stilbenedisulfonate binding site is located at the outer surface of an access channel leading to the transport site.Key words: band 3, anion transport, membrane protein structure, red cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.