Abstract
The second-generation poly(ethylene imine) dendrimer (L), based on ammonia as the initiating core molecule, forms anion and ion-pair complexes in aqueous solution. Speciation of the complex species formed and determination of the relevant stability constants were performed by means of potentiometric titration in a 0.10 M NMe4Cl solution at 298.1 K. Protonated forms of L interact with NO3(-), SO4(2-), SeO4(2-), HPO4(2-) and H2PO4(-) forming stable 1 : 1 anion complexes. The dendritic structure endows the molecule with a greater anion binding ability relative to analogous linear polyamines. It was previously reported that L forms stable metal complexes. We show here that protonated forms of the mononuclear complexes with Cu(2+), Zn(2+) and Cd(2+) bind these anions, and Pb(2+) complexes bind NO3(-). The resulting ion-pair complexes show considerable stability thanks to the cooperative effect of the oppositely charged partners. Molecular modelling calculations show that both anion-ligand and anion-metal ion interactions can participate in stabilizing such ion-pair complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.