Abstract
Hexacyanidometalates (M = FeIII, CoIII) and multisite anion receptor HAT(CN)6 (1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile) recognize each other in acetonitrile solution and self-assemble into the novel molecular networks (PPh4)3[M(CN)6][HAT(CN)6] (M = Fe, 1; Co, 2) and (AsPh4)3[M(CN)6][HAT(CN)6]·2MeCN·H2O (M = Fe, 3; Co, 4). 1-4 contain the stacked columns {[M(CN)6]3-;[HAT(CN)6]}∞ separated by the organic cations. All of the M-C[triple bond, length as m-dash]N vectors point collectively towards the centroids of pyrazine rings on neighboring HAT(CN)6 molecules, with Ncyanidecentroidpyrazine distances that are under 3 Å. The directional character and structural parameters of the new supramolecular synthons correspond to collective triple anion-π interactions between the CN- ligands of the metal complexes and the π-deficient areas of HAT(CN)6. Physicochemical characterisation (IR spectroscopy, UV-Vis spectroscopy, cyclic voltammetry) and dispersion-corrected DFT studies reveal the dominating charge-transfer (CT) and polarisation characters of the interactions. The electronic density flow occurs from the CN- ligands of [M(CN)6]3- to the HAT(CN)6 orbital systems and further, toward the peripheral -CN groups of HAT(CN)6. Solid-state DFT calculations determined the total interaction energy of HAT(CN)6 to be ca. -125 kcal mol-1, which gives ca. -15 kcal mol-1 per one CN-HAT(CN)6 contact after subtraction of the interaction with organic cations. The UV-Vis electronic absorption measurements prove that the intermolecular interactions persist in solution and suggest a 1 : 1 composition of the anion-π {[M(CN)6]3-;[HAT(CN)6]} chromophore, with the formation constant Kadd = (5.8 ± 6) × 102 dm3 mol-1 and the molar absorption coefficient εadd = 180 ± 9 cm-1 dm3 mol-1 at 600 nm, as estimated from concentration-dependent studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.