Abstract
Anion-π catalysis operates by stabilizing anionic transition states on π-acidic aromatic surfaces. In anion-(π)n-π catalysis, π stacks add polarizability to strengthen interactions. In search of synthetic methods to extend π stacks beyond the limits of foldamers, the self-assembly of micelles from amphiphilic naphthalenediimides (NDIs) is introduced. To interface substrates and catalysts, chargetransfer complexes with dialkoxynaphthalenes (DANs), a classic in supramolecular chemistry, are installed. In π-stacked micelles, the rates of bioinspired ether cyclizations exceed rates on monomers in organic solvents by far. This is particularly impressive considering that anion-π catalysis in water has been elusive so far. Increasing rates with increasing π acidity of the micelles evince operational anion-(π)n-π catalysis. At maximal π acidity, autocatalytic behavior emerges. Dependence on position and order in confined micellar space promises access to emergent properties. Anion-(π)n-π catalytic micelles in water thus expand supramolecular systems catalysis accessible with anion-π interactions with an inspiring topic of general interest and great perspectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.