Abstract
The directionality of interaction of electron-deficient π systems with spherical anions (e.g,. halides) can be controlled by secondary effects like NH or CH hydrogen bonding. In this study a series of pentafluorophenyl-substituted salts with polyhalide anions is investigated. The compounds are obtained by aerobic oxidation of the corresponding halide upon crystallization. Solid-state structures reveal that in bromide 2, directing NH-anion interactions position the bromide ion in an η(1)-type fashion over but not in the center of the aromatic ring. The same directing forces are effective in corresponding tribromide salt 3. In the crystal, the bromide ion is paneled by four electron-deficient aromatic ring systems. In addition, compounds 4 and 6, which have triiodide and the rare tetraiodide dianion as anions, are described. Computational studies reveal that the latter is highly unstable. In the present case it is stabilized by the crystal lattice, for example, by interaction with electron-deficient π systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.