Abstract

Simple SummaryNon-clinical safety, toxicology, and pharmacokinetic studies according to ICH guidelines with a new fusion protein tTF-NGR consisting of human truncated tissue factor (TF) and a small targeting peptide are reported. Results are compared with those of a phase I clinical dose escalation trial with tTF-NGR in cancer patients. Most of the non-clinical results were not predictive for human tolerability. Thus, animal sparing alternative pathways for translation of such a bio-pharmaceutical compound from preclinical studies on efficacy and mode of action into the clinic are discussed.Background: CD-13 targeted tissue factor tTF-NGR is a fusion protein selectively inducing occlusion of tumor vasculature with resulting tumor infarction. Mechanistic and pharmacodynamic studies have shown broad anti-tumor therapeutic effects in xenograft models. Methods: After successful Good Manufacturing Practice (GMP) production and before translation into clinical phase I, ICH S9 (S6) guideline-conforming animal safety, toxicology, and pharmacokinetic (PK) studies were requested by the federal drug authority in accordance with European and US regulations. Results: These studies were performed in mice, rats, guinea pigs, and beagle dogs. Results of the recently completed clinical phase I trial in end-stage cancer patients showed only limited predictive value of these non-clinical studies for patient tolerability and safety in phase I. Conclusions: Although this experience cannot be generalized, alternative pathways with seamless clinical phase 0 microdosing—phase I dose escalation studies are endorsed for anticancer drug development and translation into the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.