Abstract

The prevalence of diabetes throughout the world has increased dramatically over the recent past, and the trend will continue for the foreseeable future. One of the major concerns associated with diabetes relates to the development of micro- and macrovascular complications, which contribute greatly to the morbidity and mortality associated with the disease. Progression of the disease from prediabetic state to overt diabetes and the development of complications occur over many years. Assessment of interventions designed to delay or prevent disease progression or complications in humans also takes years and requires tremendous resources. To better study both the pathogenesis and potential therapeutic agents, appropriate animal models of type 2 diabetes (T2D) mellitus are needed. However, for an animal model to have relevance to the study of diabetes, either the characteristics of the animal model should mirror the pathophysiology and natural history of diabetes or the model should develop complications of diabetes with an etiology similar to that of the human condition. There appears to be no single animal model that encompasses all of these characteristics, but there are many that provide very similar characteristics in one or more aspects of T2D in humans. Use of the appropriate animal model based on these similarities can provide much needed data on pathophysiological mechanisms operative in human T2D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.