Abstract

We discuss recent advances in evaluating and optimizing animal models of systemic sclerosis (SSc). Such models could be of value for illuminating etiopathogenesis using hypothesis-testing experimental approaches, for developing effective disease-modifying therapies, and for uncovering clinically relevant biomarkers. We describe recent advances in previously reported and novel animal models of SSc. The limitations of each animal model and their ability to recapitulate the pathophysiology of recognized molecular subsets of SSc are discussed. We highlight attrition of dermal white adipose tissue as a consistent pathological feature of dermal fibrosis in mouse models, and its relevance to SSc-associated cutaneous fibrosis. Several animal models potentially useful for studying SSc pathogenesis have been described. Recent studies highlight particular strengths and weaknesses of selected models in recapitulating distinct features of the human disease. When used in the appropriate experimental setting, and in combination, these models singly and together provide a powerful set of in-vivo tools to define underlying mechanisms of disease and to develop and evaluate effective antifibrotic therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call