Abstract

Systemic sclerosis (SSc) is a multisystem autoimmune connective tissue disease characterized by early inflammation followed by excessive fibrosis in the skin and internal organs. Enhancing our comprehension of SSc pathogenesis is essential to develop effective therapeutic strategies. Animal models that mimic one or more aspects of SSc have been proven to be a valuable resource for investigating disease mechanisms. This review aims to provide an updated overview of the existing SSc animal models and the potentially relevant pathways to SSc pathogenesis. This review focuses on the most recently generated and investigated animal models, which delve into novel pathways beyond existing models or employ genetic technologies to gain a deeper understanding of SSc pathogenesis including activation of early type I interferon (IFN) signaling pathway, immune cell function and pulmonary artery hypertension (PAH). While no single animal model can fully replicate SSc, a combination of different models can offer valuable insights into the pathways involved in the onset and advancement of the SSc. These insights can prove animal models as a crutial preclinical tool for developing effective treatments for SSc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call