Abstract

Duchenne muscular dystrophy (DMD) is a relatively widespread genetic disease which develops as a result of a mutation in the gene DMD encoding dystrophin. In this review, animal models of DMD are described. These models are used in preclinical studies to elucidate the pathogenesis of the disease or to develop effective treatments; each animal model has its own advantages and disadvantages. For instance, Caenorhabditis elegans, Drosophila melanogaster, and zebrafish (sapje) are suitable for large-scale chemical screening of large numbers of small molecules, but their disease phenotype differs from that of mammals. The use of larger animals is important for understanding of the potential efficacy of various treatments for DMD. While mdx mice have their advantages, they exhibit a milder disease phenotype compared to humans or dogs, making it difficult to evaluate the efficacy of new treatment for DMD. The disease in dogs and pigs is more severe and progresses faster than in mice, but it is more difficult to breed and obtain sufficient numbers of specimens in order to achieve statistically significant results. Moreover, working with large animals is also more labor-intensive. Therefore, when choosing the optimal animal model for research, it is worth considering all the goals and objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call