Abstract

The retroreflective characteristics of ex-vitro cow and deer eyeballs were compared to those of man-made materials used in road signs and bicycle-style reflectors. Reflected intensities were measured using a goniometer that consists of a green He-Ne laser as the light source, and a photomultiplier tube as the detector. It was found that the best quality road-sign reflector, made from a 200-micron-scale, close-packed array of corner cubes, is approximately six times more efficient than a cow eyeball at returning light in the direction of the incoming beam. Less expensive man-made retroreflectors, utilizing 35-micron glass beads (as in mailbox decals) or millimeter-scale arrays of corner cubes (bicycle-style reflectors) are, however, less efficient than the cow eye. The high quality of animal eyeball optics is evidenced by their extremely tight angular spread (full width half maximum congruent with 1 degrees) of retroreflected intensity about the incident path. Moreover, as the reflector itself is rotated relative to the incident beam, the eyeballs preserve their efficiency of retroreflection better than the man-made materials. Interference-diffraction patterns were observed in the retroreflected beams from the small-scale corner cubes, but were not observed in eyeball retroreflection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.