Abstract
The mechanism of N-dealkylation mediated by cytochrome P450 (P450) has long been studied and argued as either a single electron transfer (SET) or a hydrogen atom transfer (HAT) from the amine to the oxidant of the P450, the reputed iron-oxene. In our study, tertiary anilinic N-oxides were used as oxygen surrogates to directly generate a P450-mediated oxidant that is capable of N-dealkylating the dimethylaniline derived from oxygen donation. These surrogates were employed to probe the generated reactive oxygen species and the subsequent mechanism of N-dealkylation to distinguish between the HAT and SET mechanisms. In addition to the expected N-demethylation of the product aniline, 2,3,4,5,6-pentafluoro-N,N-dimethylaniline N-oxide (PFDMAO) was found to be capable of N-dealkylating both N,N-dimethylaniline (DMA) and N-cyclopropyl-N-methylaniline (CPMA). Rate comparisons of the N-demethylation of DMA supported by PFDMAO show a 27-fold faster rate than when supported by N,N-dimethylaniline N-oxide (DMAO). Whereas intermolecular kinetic isotope effects were masked, intramolecular measurements showed values reflective of those seen previously in DMAO- and the native NADPH/O(2)-supported systems (2.33 and 2.8 for the N-demethylation of PFDMA and DMA from the PFDMAO system, respectively). PFDMAO-supported N-dealkylation of CPMA led to the ring-intact product N-cyclopropylaniline (CPA), similar to that seen with the native system. The formation of CPA argues against a SET mechanism in favor of a P450-like HAT mechanism. We suggest that the similarity of KIEs, in addition to the formation of the ring-intact CPA, argues for a similar mechanism of Compound I (Cpd I) formation followed by HAT for N-dealkylation by the native and N-oxide-supported systems and demonstrate the ability of the N-oxide-generated oxidant to act as an accurate mimic of the native P450 oxidant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.