Abstract
ABSTRACTA nematic poly(methyl acrylate) containing terminal sulfonic acids in side chains was prepared by etherification of a brominated mesomorphic precursor with 2‐hydroxyethanesulfonic acid sodium salt. Differential scanning calorimetry measurements and polarized light microscopy observation revealed that the sulfonated polymer exhibited the nematic mesophase at medium temperatures (189–227°C). Electrochemical impedance spectroscopy measurements showed that temperature dependence of anhydrous proton conductivity for the nematic polymer followed the Arrhenius law and that the estimated activation energy was 95 kJ mol−1 in the nematic phase. The proton conductivities of the nematic polymer were two orders of magnitude higher than those of anhydrous Nafion®117 membrane at the same temperature. The enhanced anhydrous proton conductivities of the polymeric electrolyte were ascribed to the orientational order and fluidity of the nematic liquid crystal. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40382.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.