Abstract

Exploring materials that balance the second harmonic generation (SHG) effect and laser-induced damage threshold (LIDT) is the frontier of nonlinear optical (NLO) crystal research at present. In this work, the NLO property of anhydrous aluminum iodate is extensively explored and discussed first. It exhibits a strong SHG intensity of 18.3 × KH2PO4 (KDP) and a high-powder LIDT of 1.4 × KDP at 1064 nm. Combining experimental and theoretical studies at the atomic level and electronic levels, it is found that the cations in the structure are replaced by cations with small radius and high valence, enabling the production of materials with large SHG responses. Unbonded and antibonding orbitals play a crucial positive role in the SHG response of the structure, whereas bonding orbitals produce a large negative contribution. This provides a scarce example of materials in which bonding orbitals make significant negative contributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call