Abstract

Parthenium hysterophorus plant has a diverse chemical profile and immense bioactive potential. It exhibits excellent pharmacological properties such as anti-cancer, anti-inflammatory, anti-malarial, microbicidal, and anti-trypanosomal. The present study aims to evaluate the anti-leishmanial potential and toxicological safety of anhydroparthenin isolated from P. hysterophorus. Anydroparthenin was extracted from the leaves of P. hysterophorus and characterized through detailed analysis of 1H, 13C NMR, and HRMS. Dye-based in vitro and ex vivo assays confirmed that anhydroparthenin significantly inhibited both promastigote and amastigote forms of the Leishmania donovani parasites. Both the cytotoxicity experiment and hemolytic assay revealed its non-toxic nature and safety index in the range of 10 to 15. Further, various mechanistic assays suggested that anhydroparthenin led to the generation of oxidative stress, intracellular ATP depletion, alterations in morphology and mitochondrial membrane potential, formation of intracellular lipid bodies, and acidic vesicles, ultimately leading to parasite death. As a dual targeting approach, computational studies and sterol quantification assays confirmed that anhydroparthenin inhibits the Sterol C-24 methyl transferase and Sterol 14-α demethylase proteins involved in the ergosterol biosynthesis in Leishmania parasites. These results suggest that anhydroparthenin could be a promising anti-leishmanial molecule and can be developed as a novel therapeutic stratagem against leishmaniasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call