Abstract

Despite the severity and the high prevalence of depression and anxiety and the efforts that have been done to improve their treatment, the available pharmacotherapy still has several limitations. Therefore, the investigation of novel agents and the characterization of the molecular signaling pathways underlying their effects are needed. The organoselenium compound 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) has emerged as a promising antidepressant and anxiolytic molecule in several animal models of depression through the modulation of neuroinflammation and oxidative stress. In light of this, the present study aimed to dive into the mechanism of action of CMI in ameliorating anhedonic- and anxiogenic-like behaviors induced by repeated corticosterone administration in mice. A single administration of CMI (1 ​mg/kg, i.g.) abrogated the behavioral alterations induced by corticosterone in the open field test, splash test, and elevated plus maze test. Additionally, CMI treatment decreased the levels of reactive species and lipid peroxidation in the plasma of corticosterone-treated mice and normalized the expression of GR, BDNF, synaptophysin, GSK-3β, Nrf2, and IDO in the hippocampi of stressed mice. Noteworthy, the pre-treatment of mice with LY294002 (PI3K inhibitor) and rapamycin (mTOR inhibitor) abrogated the anti-anhedonic- and anxiolytic-like effects elicited by CMI in corticosterone-treated mice, while ZnPP (HO-1 inhibitor) counteracted the anxiolytic-like effect of CMI. These findings suggest that CMI might ameliorate behavioral and biochemical alterations in the depression-anxiety comorbidity induced by corticosterone, highlighting the potential of CMI as a possible adjuvant therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.