Abstract

The present work investigated the temperature-dependent thermodynamic and structural characteristics of graphene-like monolayer boron carbide (g-BC3) using classical molecular dynamics simulations. Herein, we mainly focused on the temperature dependence of mean square displacement of thermally stimulated ripples and bending rigidity of g-BC3. We observed that at high temperatures, the specific heat capacity at constant volume exhibits a significant increase beyond the limit of Dulong-Petit value due to the presence of anharmonicity in the g-BC3. Besides, the linear thermal expansion coefficient is found to be negative owing to the excitation of low-frequency bending vibrations in the out-of-plane orientation. Studies reveal that the out-of-plane of height fluctuations and bending rigidity are fully dependent on temperature and are described using the continuum theory of membranes. Moreover, the study on the height fluctuation and correlation shows variation from the estimation of the harmonic theory of membranes as a consequence of the anharmonic features of g-BC3. We believe that our study will provide a notable contribution to numerous applications of g-BC3 including nanoelectromechanical (NEMS) devices to become a reality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.