Abstract

Combining Raman scattering and Raman optical activity (ROA) with computer simulations reveals fine structural and physicochemical properties of chiral molecules. Traditionally, the region of interest comprised fundamental transitions within 200–1800 cm–1. Only recently, nonfundamental bands could be observed as well. However, theoretical tools able to match the observed spectral features and thus assist their assignment are rather scarce. In this work, we present an accurate and simple protocol based on a three-quanta anharmonic perturbative approach that is fully fit to interpret the observed signals of methyloxirane within 150–4500 cm–1. An unprecedented agreement even for the low-intensity combination and overtone transitions has been achieved, showing that anharmonic Raman and ROA spectroscopies can be valuable tools to understand vibrations of chiral molecules or to calibrate computational models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.