Abstract
Lattice anharmonicity is thought to strongly affect vacancy concentrations in metals at high temperatures. It is however non-trivial to account for this effect directly using density functional theory (DFT). Here we develop a deep neural network potential for aluminum that overcomes the limitations inherent to DFT, and we use it to obtain accurate anharmonic vacancy formation free energies as a function of temperature. While confirming the important role of anharmonicity at high temperatures, the calculation unveils a markedly nonlinear behavior of the vacancy formation entropy and shows that the vacancy formation free energy only violates Arrhenius law at temperatures above 600 K, in contrast with previous DFT calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.