Abstract

Methodologies for creating reactive potential energy surfaces from molecular mechanics force-fields are becoming increasingly popular. To date, molecular mechanics force-fields in biochemistry and small molecule organic chemistry tend to use harmonic expressions to treat bonding stretches, which is a poor approximation in reactive and nonequilibirum molecular dynamics simulations since bonds are often displaced significantly from their equilibrium positions. For such applications there is need for a better treatment of anharmonicity. In this contribution, Morse bonding potentials have been extensively parametrized for the atom types in the MM3 force field of Allinger and co-workers using high level CCSD(T)(F12*) energies. To our knowledge this is among the first instances of a comprehensive parametrization of Morse potentials in a popular organic chemistry force field. In the context of molecular dynamics simulations, these data will: (1) facilitate the fitting of reactive potential energy surfaces using empirical valence bond approaches and (2) enable more accurate treatments of energy transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call