Abstract

In this work, we analyze the vibrational spectra of ammonium, methylammonium, and dimethylammonium ions solvated by either water molecules or bisulfate anions using anharmonic vibrational algorithms. Rich and complicated spectral features in the 2700-3200 cm-1 region of the experimental spectra of these clusters are attributed to originate from strong Fermi resonance between hydrogen-bonded NH stretching fundamentals and NH bending overtones. Additional weaker bands around 2500-2600 cm-1 in solvated aminium ions are assigned to the combination tones involving the CH-NH (methyl-amino) rocking modes. Furthermore, the qualitative resemblance in band positions and spectral patterns between two-water-solvated and two-bisulfate-solvated cations suggest a common vibrational coupling scheme beneath the two seemingly different micro-solvation environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.