Abstract
We perform neutron diffraction on a bulk Ni50.0Mn27.5Ga22.5 single crystal to investigate the evolution of its five-layered modulated (10M) martensite structure, from 300 K down to 10 K. Close to martensite transformation, the modulation is nearly commensurate, with q = 0.402 in a modulation vector (q, q, 0). Upon cooling, the shift in diffraction satellites indicates a transition to an incommensurate modulation with increasing q. However, the observed fifth-order diffraction satellites below 260 K and even more complex satellite landscape at 10 K cannot be explained by incommensurability alone. Our analysis reveals that the modulation function is highly anharmonic, encompassing Fourier components up to the eighth order. We have developed a single-parameter description of the evolution of modulation across the entire temperature interval of the 10M phase existence. Surprisingly, the structure evolution from commensurate to incommensurate modulation has no significant effect on twin boundary mobility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.