Abstract
An ab initio quartic anharmonic force field for methanol has been calculated at the equilibrium position using the CCSD(T) method for the structure and the harmonic potential energy surface, and the MP4(SDQ) method for the anharmonic part of the surface. A triple zeta basis set was employed with symmetrized curvilinear internal valence coordinates in all calculations. The internal coordinate force field constants have been transformed into force constants in the dimensionless normal coordinate representation for various isotopomers. Vibrational term values for CH3OH, CH3OD, CD3OH, and CD3OD have been obtained using second order perturbation theory. Particular care has been devoted to the inclusion of Fermi resonance interactions between different vibrational states. A good accuracy has been achieved in the calculation of the fundamentals for all the isotopomers, the mean absolute error being 5.8 cm−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.