Abstract

The properties of vibrational localized (breathers) and traveling (anharmonic phonons) waves are discussed in an infinite, one-dimensional, monoatomic crystal for the Fermi-Pasta-Ulam and Frenkel-Kontorova models. The shooting and finite difference schemes have been implemented to reckon the displacement fields of breathers and anharmonic phonons, respectively. These tools provide localized and traveling waves proving to be indefinitely stable in simulations carried out by solving the equations of motion. The emphasis is laid on the role of the cubic and quartic terms of the anharmonic potential which turn out to oppose and to shore up the restoring force, respectively. The case of vibrational modes arising in an anharmonic crystal subject to a soft phonon induced instability is also addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.