Abstract
We review the published calculations of the anharmonic effects in MgB 2 and show that different results are mainly related to the various degrees of approximation involved in the calculations. When all the leading order terms in anharmonic perturbation theory are included the magnitude of anharmonic effects is marginal. This result is in good agreement with the phonon dispersion measured by inelastic X-ray scattering showing weak anharmonic phonon frequency shift. However, Raman spectra display a feature having E 2 g symmetry at ∼12 meV above the available X-ray phonon dispersion near Γ. Raman data can be explained if dynamical effects beyond the adiabatic Born–Oppenheimer approximation and electron lifetime effects are included in the phonon self-energy, without invoking anharmonicity. Finally, we discuss the implications of weak anharmonicity for the interpretation of the isotope effect and conclude that the isotope effect is the most important unresolved issue in the physics of MgB 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.