Abstract

We investigate anH1-Galerkin expanded mixed finite element approximation of nonlinear second-order hyperbolic equations, which model a wide variety of phenomena that involve wave motion or convective transport process. This method possesses some features such as approximating the unknown scalar, its gradient, and the flux function simultaneously, the finite element space being free of LBB condition, and avoiding the difficulties arising from calculating the inverse of coefficient tensor. The existence and uniqueness of the numerical solution are discussed. Optimal-order error estimates for this method are proved without introducing curl operator. A numerical example is also given to illustrate the theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.