Abstract

Automatic hand-drawn sketch recognition is an important task in computer vision. However, the vast majority of prior works focus on exploring the power of deep learning to achieve better accuracy on complete and clean sketch images, and thus fail to achieve satisfactory performance when applied to incomplete or destroyed sketch images. To address this problem, we first develop two datasets that contain different levels of scrawl and incomplete sketches. Then, we propose an angular-driven feedback restoration network (ADFRNet), which first detects the imperfect parts of a sketch and then refines them into high quality images, to boost the performance of sketch recognition. By introducing a novel "feedback restoration loop" to deliver information between the middle stages, the proposed model can improve the quality of generated sketch images while avoiding the extra memory cost associated with popular cascading generation schemes. In addition, we also employ a novel angular-based loss function to guide the refinement of sketch images and learn a powerful discriminator in the angular space. Extensive experiments conducted on the proposed imperfect sketch datasets demonstrate that the proposed model is able to efficiently improve the quality of sketch images and achieve superior performance over the current state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.