Abstract

The linear instability of Lotka-Volterra orbits in the homogenous manifold of a two-patch system is analyzed. The origin of these orbits instability in the absence of prey migration is revealed to be the dependence of the angular velocity on the azimuthal angle; in particular, the system desynchronizes at the exit from the slow part of the trajectory. Using this insight, an analogous model of a two coupled oscillator is presented and shown to yield the same type of linear instability. This enables one to incorporate the linear instability within a recently presented general framework that allows for comparison of all known stabilization mechanisms and for simple classification of observed oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.