Abstract

We study the general properties of the cosmic microwave background temperature four-point function, specifically its harmonic analogue, the angular trispectrum, and illustrate its utility in finding optimal quadratic statistics through the weak gravitational lensing effect. We determine the general form of the trispectrum, under the assumptions of rotational, permutation, and parity invariance, its estimators on the sky, and their Gaussian noise properties. The signal-to-noise in the trispectrum can be highly configuration dependent and any quadratic statistic used to compress the information to a manageable two-point level must be carefully chosen. Through a systematic study, we determine that for the case of lensing a specific statistic, the divergence of a filtered temperature-weighted temperature-gradient map contains the maximal signal-to-noise and reduces the variance of estimates of the large-scale convergence power spectrum by over an order of magnitude over previous gradient-gradient techniques. The total signal-to-noise for lensing with the Planck satellite is of order 60 for a fiducial cold dark matter model with a cosmological constant $(\ensuremath{\Lambda}\mathrm{CDM}).$

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.