Abstract
The paper is devoted to the system for measuring the stability of the angles Yaw (θz), Pitch (θy) and Roll (θx) of a linear piezoelectric motor type LPM5 / BSP-1540SL, which allowed to measure the angular deviations of the piezoelectric carriage depending on its position. The system was based on the use of the auto-collimation method, which provided the measurement of the angular discrepancy between its own optical axis of the auto-collimator and the normal to the plane of the mirror-reflecting surface. To measure the angular deviation of the carriage of the engine was used AK-0,5U auto-collimator with an optical resolution of 0.5 arc seconds. The auto-collimator scale was marked up in steps of 0.5 arcmin (30 arcsec), and its informative optical reference was made as a green intersection. This feature was later used to determine its position on the image obtained with the CCD matrix OV5647. The image obtained from the matrix had a resolution of 1024x768 pixels. In the matrix image, the distance between adjacent labels (auto-collimator scale step) was ~ 35 pixels, that is, the electronic resolution of the matrix was near to ~ 1 arc second. For control the engine speed and its position was used an optical encoder iC-PX3212 with a resolution of 2.6 µm. The control system also includes a single-board computer RaspberryPi 3B + , which allowed to control the engine via USB data protocol, receive images via MIPI-CSI protocol, process images from the array, and output it to the monitor via HDMI. During the experiment, 376 images were obtained (188 images when measuring Pitch, Yaw angles, and 188 images when measuring Roll angle). Image processing was performed using PIL (image) and numpy libraries in Python programming language. Was demonstrated the possibility of measuring angular stability over a large distance of movement with an accuracy of 5 arc.sec. On the basis of the experimental results obtained, it was found that most changed the angles of Pitch and Roll (~ 3 angular minutes). The results obtained by measuring the angles of Pitch, Yaw and Roll make it possible to develop a model of errors of a multi-axis micromanipulation system in order to take them into account when designing the control system.
Highlights
The paper is devoted to the system for measuring the stability
which allowed to measure the angular deviations of the piezoelectric carriage depending on
The system was based on the use of the auto-collimation method
Summary
На основі цієї системи проведено дослідження прямолінійності ходу лінійного п’єзоелектричного двигуна типу LPM5/BSP-1540SL, а саме його кутових переміщень Pitch(θy), Yaw(θz) та Roll(θx). Параметрами прямолінійності ходу лінійного п’єзоелектричного двигуна є кутові переміщення Roll(θx), Pitch(θy) та Yaw(θz) (рис.). Згадані вище кутові переміщення Roll(θx), Pitch(θy) та Yaw(θz) змінюються в просторі по всій довжині лінійної направляючої п’єзоелектричного двигуна і суттєво впливають на додаткові зміщення робочого інструменту мікроманіпуляційної системи. Для прикладу нижче на рис. показано вплив кута Yaw(θz) на зміщення робочого інструменту мікроманіпуляційної системи при русі вздовж вісі Х. Вказане вище визначає актуальність цієї роботи та диктує необхідність створення системи контролю стабільності лінійного п’єзоелектричного двигуна, яка б здійснювала вимірювання його кутових переміщень Roll(θx), Pitch(θy) та Yaw(θz) із використанням автоколімаційного методу та послідуючої цифрової обробки інформації. Схема такого двигуна наведена нижче на рис.3 [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.